Contact Lenses Grading Scales

GRADE 0

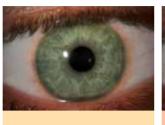
GRADE 1

GRADE 2

GRADE 3

GRADE 4

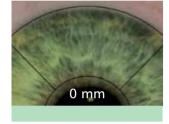
Bulbar redness

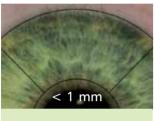

Etiology	Dilation of bulbar vessels, e.g. due to mechanical stimulation, allergy/hypersensitivity etc
Normal grade	Up to grade 2
Comment	Useful to evaluate using the same magnification each time

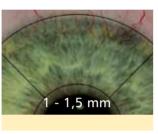
Limbal redness

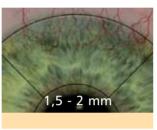
Etiology	Dilation of bulbar vessels, e.g. due to hypoxia
Normal grade	Up to grade 2
Comment	Often seen in combination with bulbar redness

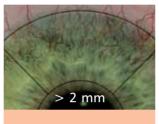
Tarsal redness

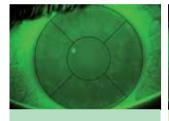




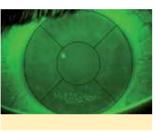


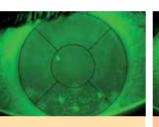

Etiology	Dilation of tarsal vessels, e.g. due to preservatives in lens care products, ocular dryness, mechanical irritation etc
Normal grade	Up to grade 2
Comment	Roughness of the tarsal conjunctiva increases in higher grades

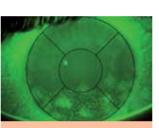

Corneal neovascularisation

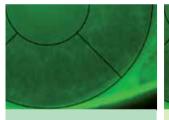


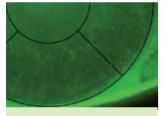





Etiology	Primarily due to corneal hypoxia
Normal grade	Grade 0
Comment	Classification based on the extent of blood vessel ingrowth

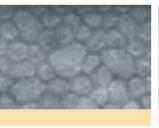

Corneal staining: Dessication

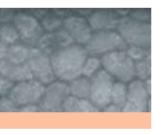




Etiology	Superficial cells of the corneal epithelium become damaged
Normal grade incomplete blink	Grade 0. Grade 1 may be a normal consequence of an
Comment	Stain with fluorescein, view with blue light and a yellow filter

SICS – Solution induced corneal staining


Etiology	Toxic reaction to contact lens solution
Normal grade	Grade 0
Comment	Stain with fluorescein, view with blue light and a yellow filter. Consider changing the solution type


Polymegethism

Etiology	Variation in the endothelial cell size; normally age related, in CL wear due to hypoxia
Normal grade	Cells appear roughly hexagonal and of approximately equal size
Comment	Best observed using specular reflection of the corneal endothelium

Patient benefits of upgrading to silicone hydrogel lenses

- Superior comfort¹.
- Significantly lower likelihood of common hypoxic complications².
- Improved longevity of contact lens wear versus hydrogel wearers3.

Defining locations on the cornea

Describing/documenting the corneal location of a slit lamp finding Purpose Indication Infiltrates, staining, foreign bodies etc

C – central S – superior I – inferior N – nasal T – temporal Practice orientated

Scientific/research

Purpose

Indication

Defining locations on the tarsal conjunctiva

To grade tarsal slit lamp findings exactly if there are local differences

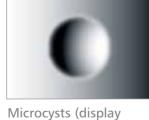
Papillae, foreign body, redness/hyperaemia, follicles etc

C - central S – superior I – inferior N – nasal T – temporal

Striae and folds in Descemet's membrane

Indicative of corneal oedema, e.g. due to hypoxia Purpose Indication No folds. Some striae may be visible immediately following waking Comment Document the size, location, orientation and number

5 % corneal oedema: 7 % corneal oedema:


0 % corneal oedema: 12 % corneal oedema: striae and folds 16 % corneal oedema: striae, folds, microcysts and vacuoles

no striae very few striae more striae

Microcysts and vacuoles Indicative of chronic hypoxic stress Purpose

No microcysts or vacuoles Indication Comment High magnification, monitor in the reflected light, note the quantity

reversed illumination)

Vacuoles (display

unreversed illumination)

a Novartis company

